

Force and torque sensors

Edin Džiho Univerzitet "Džemal Bijedić" u Mostaru – Mašinski fakultet

Sensor systems / 15.04.2025

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be."

Partnership for Promotion and Popularization of Electrical Mobility through Transformation and Modernization of WB HEIs Study Programs/PELMOB

Call: ERASMUS-EDU-2022-CBHE-STRAND-2

Project Number: 101082860

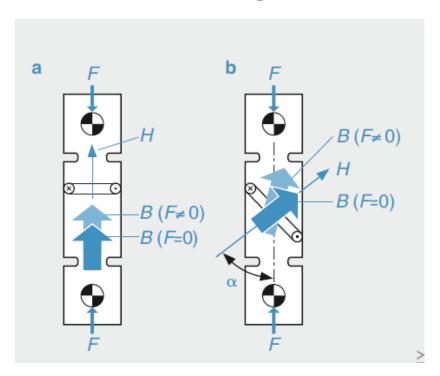
Project number: 101082860

Introduction

- The following list underlines the wide variety of applications for force and torque sensors in automotive engineering:
- In the commercial-vehicle sector, coupling force between the tractor vehicle and its trailer or semitrailer for the closed-loop controlled application of the brakes, whereby neither push nor pull forces are active at the drawbar
- Damping force for use in electronic chassis and suspension control
- Axle load for electronically controlled braking-force distribution on commercial vehicles
- Pedal force on electronically-controlled brake systems
- Braking force on electrically actuated, electronically-controlled brake systems

Project number: 101082860

Introduction


- Basically speaking, when considering force and torque measurement, a difference must be made between
- static and
- dynamic measuring principles,
- and between measuring principles based on
- displacement and
- mechanical strain.

Project number: 101082860

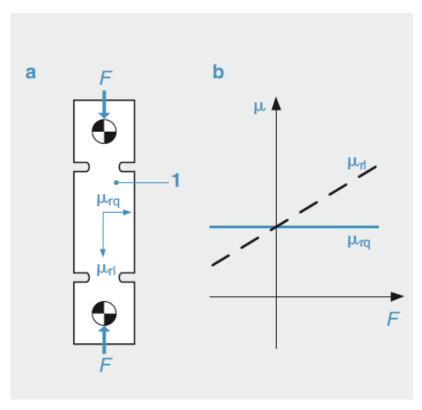
Strain measuring force sensors Magnetoelastic principle

a With direction of force parallel to the direction of field

b For different directions of field strength H and force F

B Induction

 α Enclosed angle


Magnetoelastic anisotropic effect

Project number: 101082860 Measuring principles

Measuring principles

Magnetoelastic anisotropic effect

a	Magnetoelastic
	measurement
	structure
b	Measuring effect
F	Force
μ_r	Relative magnetic
	permeability
μ_{rq}	Transverse to the
•	direction of force
μ_{rl}	In the direction of
	force

Project number: 101082860 Measuring principles

Strain gage principle (piezoresistive)

Hooke's law:

$$\varepsilon = \Delta l/l = \sigma/E$$

 ε , mm/mm – elongation

 Δl , mm – absolute elongation

l, mm – length

σ, MPa – mechanical strain

E, GPa – modulus of elasticity

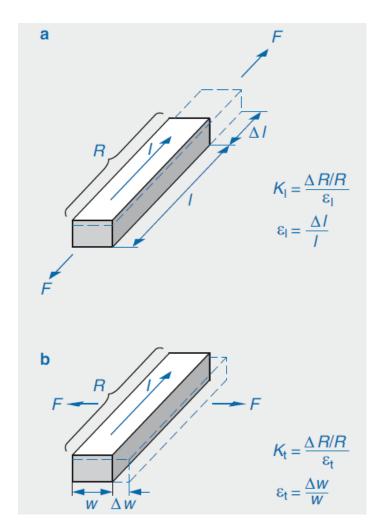
K factor:

$$\Delta R/R = \kappa \epsilon$$

K, – gage factor

 ΔR , Ω –resistance change due resistor's elongation

R, Ω – resistance of resistor


ε, mm/mm – elongation

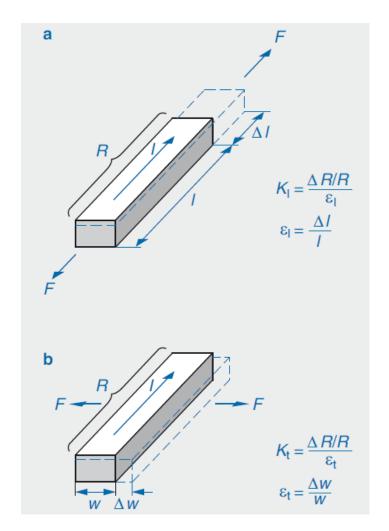
Project number: 101082860

Measuring principles

a Longitudinal
b Transverse
F Force
I Current
R Resistance
I Length
K Gage factor

 ω Width

 ε Elongation

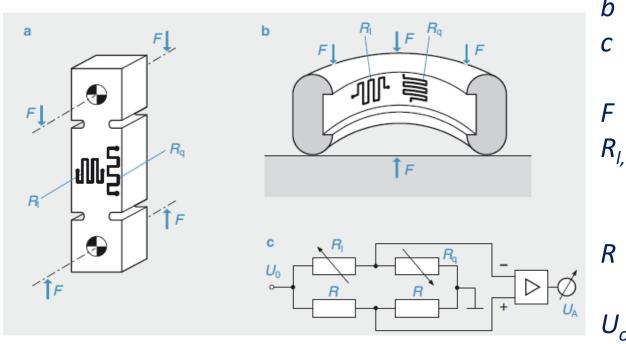

Gage factor (K), physical quantities

Project number: 101082860

Measuring principles

Gage factor (K), physical quantities

a	Longitudinal
b	Transverse
F	Force
1	Current
R	Resistance
l	Length
K	Gage factor
ω	Width
${\cal E}$	Elongation

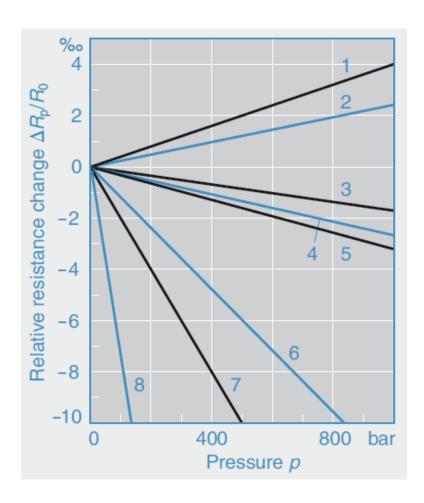

Material	Gage factors (K)		
	Iongitudinal	transverse	
Foil strain gage	1.6 to 2.0	≈ 0	
Thick-film	12 to 15	12 to 15	
Metal thin film	1.4 to 2.0	-0.5 to 0	
Si thin film	25 to 40	-25 to -40	
Si-monocrystalline	100 to 150	-100 to -150	

Project number: 101082860

Strain gage principle (piezoresistive)

Strain-gage force sensors

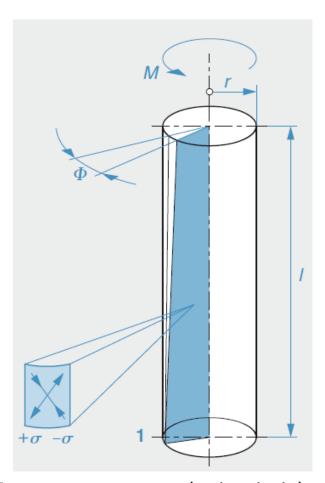
Rod-shaped Toroidal-shaped b **Electronic** evaluation Force $R_{l,q}$ Metal-film resistors, lengthwise, crosswise Auxiliary bridge Resistors Supply voltage Output voltage


 U_{A}

Program: ERASMUS-EDU-2022-CBHE-STRAND-2
Project number: 101082860

Strain gage principle (piezoresistive)

1	84.5 Ag 15.5 Mn
2	Manganin
3	Cu
4	Au
<i>5</i>	Ag
6	Carbon film/layer
7	Cermet
8	Conductive plastic

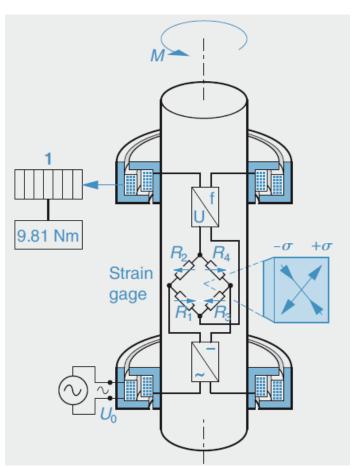

Piezoresistive behavior of various resistance materials when orthogonal compression is applied

Program: ERASMUS-EDU-2022-CBHE-STRAND-2
Project number: 101082860

Torque sensors

Torque measurement: basic principle

M Torque r Radius


Rod length

Project number: 101082860

Strain-measuring torque sensors

Strain-gage torque sensor with non-contacting (proximity) transformer pick-off

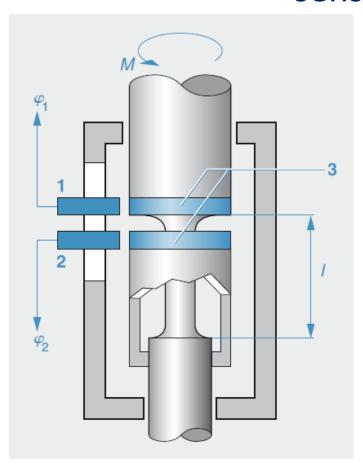
1 Torque indicator

 σ Torsional stress

M Torque

r Supply voltage

 R_1 to R_4 Strain-gage


measuring resistors

Project number: 101082860

Angle-measuring (torsion-measuring) sensors

Determining torque by measuring angular difference

 $M = \text{const} \cdot L \cdot (\varphi_2 - \varphi_1)$

where *L* = length of the section subject to torsion

1, 2 Angle/speed

sensors

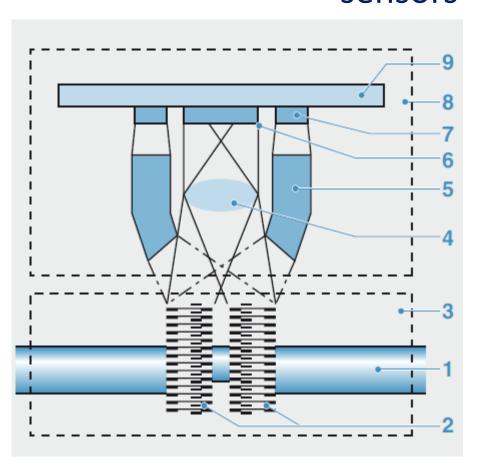
3 Angle markings

M Torque to be

measured

I Torsionmeasurement

section

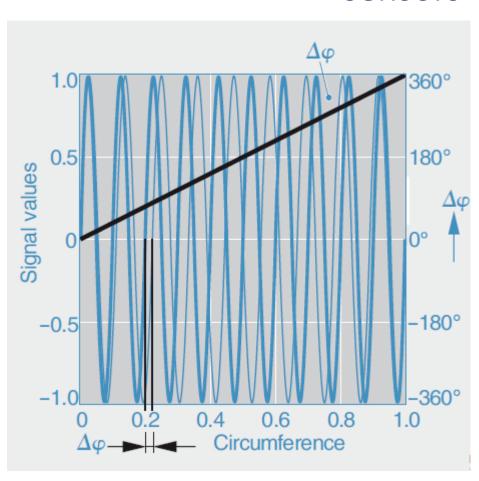

 $\varphi_{1,2}$ Angle signals

Project number: 101082860

Angle-measuring (torsion-measuring) sensors

Optoelectronic angular difference steering torque sensor

Optical pick-off of the angle marking tracks

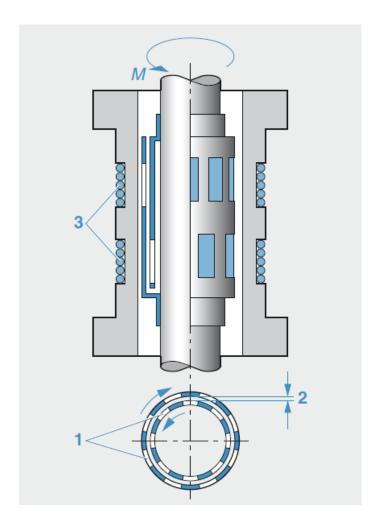

- 1 Steering shaft with torsion rod
- 2 Code disks with bar code
- 3 Steering gear housing
- 4 Lens
- 5 Optical waveguides
- 6 Optical ASIC
- 7 LED
- 8 Sensor module
- 9 PCB

Project number: 101082860

Angle-measuring (torsion-measuring) sensors

$$w = \arctan(u_1/u_2)$$

where
$$u_1 = u \cdot \sin \varphi$$
 and $u_2 = u \cdot \cos \varphi$


Angle measurement using the vernier principle

Project number: 101082860

Eddy-current torque sensors

1 Slotted sleeves

2 Air gap

3 High-frequency

coils

M Torque to be

measured

Eddy-current torque sensor